Mechanism of T5-induced DNA polymerase. II. Characterization of the dead-end complex.


We have shown that bacteriophage T5-induced DNA polymerase replicates short primer-templates (400 to 600 nucleotides long) at a rapid rate initially, followed by a slower rate sustained for much longer periods (Das, S. K., and Fujimura, R. K. (1977) J. Biol. Chem. 252, 8700-8707). In order to explain the slower steady rate and the results of polymer-challenge experiments, we conjectured the presence of a "dead-end complex" formed by the enzyme with the primer-template at the end of the primer elongation process. In this communication we present evidence which indicates that the presumed complex shows a first order kinetics of decay with a half-life of 3.5 min at 37 degrees. Energies of activation for the steady phase of synthesis and the decay of the dead-end complex were both found to be about 23 kcal/mol. This indicates that the dissociation of the aforesaid complex might be the rate-limiting step during the steady phase of synthesis. Correlation between the salt-induced reduction in the half-life of the complex and the increase in the steady rate of synthesis is in agreement with the above mentioned possibility.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.