Unique misinsertion specificity of poliota may decrease the mutagenic potential of deaminated cytosines.

Abstract:

DNA polymerase iota (poliota) is a distributive error-prone enzyme ...
DNA polymerase iota (poliota) is a distributive error-prone enzyme that can incorporate nucleotides opposite a variety of DNA lesions. Further elongation is, however, either substantially inhibited or completely abolished. Here, we provide evidence that poliota can facilitate the efficient bypass of uracil and its derivatives as well as oxidized cytosine and guanine residues. The fidelity of translesion replication depends upon the lesion encountered. Correct nucleotides were inserted preferentially opposite 7,8-dihydro-8-oxoguanine (8-oxoG) and 5-hydroxycytosine (5-OHC). However, when bypassing uracil, 5-hydroxyuracil (5-OHU) or 5,6-dihydrouracil (5,6-DHU), poliota inserted T and G with a 4- to 26-fold preference over the Watson-Crick base, A. While the T:U, T:5-OHU and T:5,6-DHU mispairs were extended poorly, the G:U, G:5-OHU and G:5,6-DHU mispairs were extended with equal or greater efficiency than the correctly paired primer termini. Thus, poliota-dependent misinsertion of G opposite uracil and its derivatives may actually provide a mechanism whereby mammalian cells can decrease the mutagenic potential of lesions formed via the deamination of cytosine.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.