[New photoreactive N(4)-substituted dCTP analogues:synthesis, photochemical characteristics, and substrate properties in HIV-1 reverse transcriptase catalyzed DNA synthesis].


Photochemical characteristics and substrate properties of four newly ...
Photochemical characteristics and substrate properties of four newly synthesized dCTP analogues: N4-[2-(2-nitro-5-azidobenzoylamino)ethyl]-, N4-[2-(4-azidotetrafluorobenzylideneaminooxymethylcarbamoyl)ethyl] -, N4-[4-(4-azidotetrafluorobenzylideneaminooxy)butyloxy]-, and N4-[4-(4-azidotetrafluorobenzylidene hydrazinocarbonyl)butylcarbamoyl]-, and N4-[4-(4-azidotetrafluorobenzylideneaminooxy)butyloxy]-2'-de oxycytidine 5'-triphosphates as well as those of the earlier described N4-[2-(4-azidotetrafluorobenzoylamino)ethyl]- and 5-[E-3-(4-azidotetrafluorobenzoylamino)-1-propenyl)]-2'-deoxycytid ine 5'-triphosphates were compared. When being irradiated with UV light at a wavelength of 303-313 nm, the new analogues demonstrated greater than 10-fold higher photoactivity as compared with the old compounds. The first three new compounds were utilized by HIV-1 reverse transcriptase as dCTP and dTTP, while the last derivative was recognized only as dTTP. Once incorporated into the primer 3'-terminus, none of the analogues synthesized terminated further primer elongation with natural triphosphates.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.