Computational prediction of residues involved in fidelity checking for DNA synthesis in DNA polymerase I.

Abstract:

Recent single-molecule Förster resonance energy transfer studies of ...
Recent single-molecule Förster resonance energy transfer studies of DNA polymerase I have led to the proposal of a postinsertion fidelity-checking site. This site is hypothesized to ensure proper base pairing of the newly inserted nucleotide. To help test this hypothesis, we have used energy decomposition, electrostatic free energy response, and noncovalent interaction analysis analyses to identify residues involved in this putative checking site. We have used structures of DNA polymerase I from two different organisms, the Klenow fragment from Escherichia coli and the Bacillus fragment from Bacillus stearothermophilus. Our results point to several residues that show altered interactions for three mispairs compared to the correctly paired DNA dimer. Furthermore, many of these residues are conserved among A family polymerases. The identified residues provide potential targets for mutagenesis studies for investigation of the fidelity-checking site hypothesis.

Polymerases:

Topics:

Mutational Analysis, Structure and Structure/Function, Fidelity, Enzyme Substrate Interactions

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.