Mutagenic bypass of 8-oxo-7,8-dihydroguanine (8-hydroxyguanine) by DNA polymerase κ in human cells.

Abstract:

The formation of 8-oxo-7,8-dihydroguanine (G(O), 8-hydroxyguanine) in ...
The formation of 8-oxo-7,8-dihydroguanine (G(O), 8-hydroxyguanine) in DNA and in the nucleotide pool results in G:C→T:A and A:T→C:G substitution mutations, respectively, since G(O) can pair with both C and A. In this study, the role of DNA polymerase κ in the mutagenicity of G(O) was investigated, using a supF shuttle plasmid propagated in human U2OS cells. This translesion synthesis DNA polymerase was knocked down by siRNA, and plasmid DNAs containing G(O):C and G(O):A pairs were transfected into the knock-down cells. The supF plasmid DNAs replicated in the cells were then introduced into Escherichia coli. Mutation analyses indicated that the knock-down of DNA polymerase κ by siRNA decreased the frequency of G:C→T:A mutation caused by G(O):C, although no effects of the DNA polymerase κ reduction were observed for the A:T→C:G substitution induced by G(O):A. These results suggested that DNA polymerase κ is involved in the mutagenic bypass of G(O) in living human cells, when the damaged base is generated by direct DNA oxidation.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.