Non-nucleoside reverse transcriptase inhibitors (NNRTIs): past, present, and future.

Abstract:

Non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) have ...
Non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) have become an inherent ingredient of the drug combination schemes that are currently used in the treatment of human immunodeficiency virus type 1 (HIV-1) infections. Starting from the 1-[(2-hydroxyethoxy)methyl]-6-(phenylsulfanyl)thymine (HEPT) and 4,5,6,7-tetrahydroimidazo[4,5,1-jk][1,4]benzodiazepin-2(1H)-one and -thione (TIBO) derivatives, numerous classes of compounds have been described as NNRTIs. Only three compounds have so far been approved for clinical use: nevirapine, delavirdine, and efavirenz. NNRTIs are notorious for rapidly leading to virus-drug resistance development, primarily based on the emergence of the K103N and Y181C mutations in the HIV-1 RT. Newer NNRTIs, such as capravirine, dapivirine (TMC 125), and DPC 083, are resilient to these 'NNRTI' mutations, and, therefore, offer considerable promise as future anti-HIV-1 drugs. NNRTIs are targeted at a specific 'pocket' binding site within the HIV-1 RT, that is distinct from, but both spatially and functionally related to, the catalytic site, where the nucleoside RT inhibitors (NRTIs) and nucleotide RT inhibitors (NtRTIs) interact. NNRTIs have acquired a definitive position, as part of a combination regimen with NRTIs and NtRTIs, in the first-line treatment of HIV-1 infections.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.