TopBP1 and DNA polymerase-alpha directly recruit the 9-1-1 complex to stalled DNA replication forks.


TopBP1 and the Rad9-Rad1-Hus1 (9-1-1) complex activate the ataxia ...
TopBP1 and the Rad9-Rad1-Hus1 (9-1-1) complex activate the ataxia telangiectasia mutated and Rad3-related (ATR) protein kinase at stalled replication forks. ATR is recruited to stalled forks through its binding partner, ATR-interacting protein (ATRIP); however, it is unclear how TopBP1 and 9-1-1 are recruited so that they may join ATR-ATRIP and initiate signaling. In this study, we use Xenopus laevis egg extracts to determine the requirements for 9-1-1 loading. We show that TopBP1 is required for the recruitment of both 9-1-1 and DNA polymerase (pol)-alpha to sites of replication stress. Furthermore, we show that pol-alpha is also directly required for Rad9 loading. Our study identifies an assembly pathway, which is controlled by TopBP1 and includes pol-alpha, that mediates the loading of the 9-1-1 complex onto stalled replication forks. These findings clarify early events in the assembly of checkpoint signaling complexes on DNA and identify TopBP1 as a critical sensor of replication stress.



Accessory Proteins/Complexes


new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.