DNA polymerase V kinetics support the instructive nature of an oxidized abasic lesion in Escherichia coli.


Translesion synthesis past an oxidized abasic site, ...
Translesion synthesis past an oxidized abasic site, 2-deoxyribonolactone, in Escherichia coli results in high levels of dG incorporation and is dependent upon DNA polymerase V (Pol V). Kinetic experiments performed here affirm that Pol V preferentially incorporates dG opposite 2-deoxyribonolactone (L). Pol V discriminates between dG and dA on the basis of the apparent KD, suggesting that L provides instructive structural information to the enzyme despite lacking a Watson-Crick base.



Nucleotide Analogs / Template Lesions


new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.