Single-molecule investigation of the T4 bacteriophage DNA polymerase holoenzyme: multiple pathways of holoenzyme formation.


In T4 bacteriophage, the DNA polymerase holoenzyme is responsible for accurate and processive DNA synthesis. The holoenzyme consists of DNA polymerase gp43 and clamp protein gp45. To form a productive holoenzyme complex, clamp loader protein gp44/62 is required for the loading of gp45, along with MgATP, and also for the subsequent binding of polymerase to the loaded clamp. Recently published evidence suggests that holoenzyme assembly in the T4 replisome may take place via more than one pathway [Zhuang, Z., Berdis, A. J., and Benkovic, S. J. (2006) Biochemistry 45, 7976-7989]. To demonstrate unequivocally whether there are multiple pathways leading to the formation of a productive holoenzyme, single-molecule fluorescence microscopy has been used to study the potential clamp loading and holoenzyme assembly pathways on a single-molecule DNA substrate. The results obtained reveal four pathways that foster the formation of a functional holoenzyme on DNA: (1) clamp loader-clamp complex binding to DNA followed by polymerase, (2) clamp loader binding to DNA followed by clamp and then polymerase, (3) clamp binding to DNA followed by clamp loader and then polymerase, and (4) polymerase binding to DNA followed by the clamp loader-clamp complex. In all cases, MgATP is required. The possible physiological significance of the various assembly pathways is discussed in the context of replication initiation and lagging strand synthesis during various stages of T4 phage replication.




Accessory Proteins/Complexes

One line summary:

Formation of a holoenzyme complex has four possible pathways: 1)Clamp loader(gp44/62)-Clamp(gp45) complex binding to DNA followed by polymerase (gp43). 2)Clamp loader, clamp and then polymerase binding. 3)Clamp, Clamp loader ending with polymerase. 4)Polymerase binding finishing with the Clamp loader-Clamp.


new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.