Mechanism of DNA polymerase I: exonuclease/polymerase activity switch and DNA sequence dependence of pyrophosphorolysis and misincorporation reactions.


Mechanistic features of several processes involved in the ...
Mechanistic features of several processes involved in the idling-turnover reaction catalyzed by the large (Klenow) fragment of Escherichia coli DNA polymerase I have been established. The exonuclease----polymerase activity switch involved in the excision/incorporation mode of idling-turnover occurs without an intervening dissociation of the enzyme from its DNA substrate. Comparative studies on the pyrophosphorolysis kinetics of related DNA substrates indicate a significant dependence of the reaction rate upon the DNA sequence within the duplex region upstream of the primer-template junction. Finally, a gel electrophoretic analysis of the products of the idling-turnover reaction has provided direct evidence for an alternative DNA sequence-dependent misincorporation/excision pathway.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.