DNA polymerase beta conducts the gap-filling step in uracil-initiated base excision repair in a bovine testis nuclear extract.


The G:U mismatch in genomic DNA mainly arises from deamination of ...
The G:U mismatch in genomic DNA mainly arises from deamination of cytosine residues and is repaired by the base excision repair pathway. We found that a bovine testis crude nuclear extract conducts uracil-initiated base excision repair in vitro. A 51-base pair synthetic DNA substrate containing a single G:U mismatch was used, and incorporation of dCMP during repair was exclusively to replace uracil. A neutralizing polyclonal antibody against DNA polymerase beta (beta-pol) inhibited the repair reaction. ddCTP also inhibited the repair reaction, whereas aphidicolin had no significant effect, suggesting that activity of beta-pol was required. Next, the base excision repair system was reconstituted using partially purified components. Several of the enzymatic activities required were resolved, such that DNA ligase and the uracil-DNA glycosylase/apurinic/apyrimidinic endonuclease activities were separated from the DNA polymerase requirement. We found that purified beta-pol could restore full DNA repair activity to the DNA polymerase-depleted fraction, whereas purified DNA polymerases alpha, delta, and epsilon could not. These results with purified proteins corroborated results obtained with the crude extract and indicate that beta-pol is responsible for the single-nucleotide gap filling reaction involved in this in vitro base excision repair system.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.