DNA polymerase beta conducts the gap-filling step in uracil-initiated base excision repair in a bovine testis nuclear extract.
The Journal of biological chemistry (1995), Volume 270, Page 949
Abstract:
The G:U mismatch in genomic DNA mainly arises from deamination of cytosine residues and is repaired by the base excision repair pathway. We found that a bovine testis crude nuclear extract conducts uracil-initiated base excision repair in vitro. A 51-base pair synthetic DNA substrate containing a single G:U mismatch was used, and incorporation of dCMP during repair was exclusively to replace uracil. A neutralizing polyclonal antibody against DNA polymerase beta (beta-pol) inhibited the repair reaction. ddCTP also inhibited the repair reaction, whereas aphidicolin had no significant effect, suggesting that activity of beta-pol was required. Next, the base excision repair system was reconstituted using partially purified components. Several of the enzymatic activities required were resolved, such that DNA ligase and the uracil-DNA glycosylase/apurinic/apyrimidinic endonuclease activities were separated from the DNA polymerase requirement. We found that purified beta-pol could restore full DNA repair activity to the DNA polymerase-depleted fraction, whereas purified DNA polymerases alpha, delta, and epsilon could not. These results with purified proteins corroborated results obtained with the crude extract and indicate that beta-pol is responsible for the single-nucleotide gap filling reaction involved in this in vitro base excision repair system.
Polymerases:
Topics:
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.