Synthesis and biological evaluation of 2',3'-didehydro-2',3'- dideoxy-5-fluorocytidine (D4FC) analogues: discovery of carbocyclic nucleoside triphosphates with potent inhibitory activity against HIV-1 reverse transcriptase.


The discovery of a novel cytosine nucleoside, beta-D-2', ...
The discovery of a novel cytosine nucleoside, beta-D-2', 3'-didehydro-2',3'-dideoxy-5-fluorocytidine (D-D4FC), as a potent antihuman immunodeficiency virus (HIV) agent led us to synthesize a series of analogues and derivatives of beta-D-D4FC that could be more selective and also possess increased glycosidic bond stability. The synthesized D-D4FC analogues were evaluated for anti-HIV-1 activity, anticancer activity, and cytotoxicity in various cells. The biological data demonstrated that the 5-substitution of beta-D-D4FC with bromine (6c) and iodine (6d) resulted in the loss of antiviral activity, and the alpha-D anomer (7a) of D-D4FC was also devoid of activity. The 5-fluorouracil analogues (6b and 7b) of D-D4FC were less potent and more cytotoxic than the parent compound, whereas the beta-L-D4FU (11) showed both potent anti-HIV-1 activity and cytotoxicity. N4- and 5'-O-acyl derivatives (17, 15a-c) of beta-D-D4FC exhibited comparable antiviral activity to beta-D-D4FC. In contrast, the N4-isopropyl derivative (20) of beta-D-D4FC was not active against HIV-1, even at 100 microM. The carbocyclic analogues (26a,b) of D4FC demonstrated weak activity against HIV-1 and no toxicity in various cells. The triphosphates (27a,b) of the carbocyclic nucleosides demonstrated potent inhibitory activity against recombinant HIV-1 reverse transcriptase at submicromolar concentrations. Of the compounds tested as potential anticancer agents, beta-D-, alpha-D-, and beta-L-D4FU (6b, 7b, 11) showed inhibitory activity against rat glioma and modest activity against human lung carcinoma, lymphoblastoid, and skin melanoma cells.



Nucleotide Analogs / Template Lesions, Nucleotide Incorporation


new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.