The Pol32 subunit of DNA polymerase delta contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding.
The Journal of biological chemistry (2004), Volume 279, Page 1907
Abstract:
We have carried out a domain analysis of POL32, the third subunit of Saccharomyces cerevisiae DNA polymerase delta (Pol delta). Interactions with POL31, the second subunit of Pol delta, are specified by the amino-terminal 92 amino acids, whereas interactions with the replication clamp proliferating cell nuclear antigen (PCNA, POL30) reside at the extreme carboxyl-terminal region. Pol32 binding, in vivo and in vitro, to the large subunit of DNA polymerase alpha, POL1, requires the carboxyl-proximal region of Pol32. The amino-terminal region of Pol32 is essential for damage-induced mutagenesis. However, the presence of its carboxyl-terminal PCNA-binding domain enhances the efficiency of mutagenesis, particularly at high loads of DNA damage. In vitro, in the absence of effector DNA, the PCNA-binding domain of Pol32 is essential for PCNA-Pol delta interactions. However, this domain has minimal importance for processive DNA synthesis by the ternary DNA-PCNA-Pol delta complex. Rather, processivity is determined by PCNA-binding domains located in the Pol3 and/or Pol31 subunits. Using diagnostic PCNA mutants, we show that during DNA synthesis the carboxyl-terminal domain of Pol32 interacts with the carboxyl-terminal region of PCNA, whereas interactions of the other subunit(s) of Pol delta localize largely to a hydrophobic pocket at the interdomain connector loop region of PCNA.
Polymerases:
Topics:
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.