Synthesis and structure-activity relationships of dehydroaltenusin derivatives as selective DNA polymerase alpha inhibitors.

Abstract:

Herein, we describe the synthesis and structure-activity relationships ...
Herein, we describe the synthesis and structure-activity relationships of dehydroaltenusin derivatives as inhibitors of a mammalian DNA polymerase alpha. We have newly synthesized nine dehydroaltenusin derivatives modified at the side chains or benzoquinone moiety. We also achieved the first synthesis of desmethylaltenusin and desmethyldehydroaltenusin, metabolites of Alternaria sp. or Talaromyces flavus, respectively. Among all synthesized derivatives, demethoxydehydroaltenusin was the most selective inhibitor of DNA polymerase alpha. The o-hydroxy-p-benzoquinone (2-hydroxycyclohexa-2,5-dienone) moiety is essential for the inhibition of DNA polymerases. Substitution at the 5-position of dehydroaltenusin is important for the inhibitory potency. Because dehydroaltenusin is conjugated with N-acetylcysteine methyl ester at the o-hydroxy-p-benzoquinone moiety, one or more cysteine residues of DNA polymerase alpha may act as a target for this compound.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.