Identification of a novel REV1-interacting motif necessary for DNA polymerase kappa function.


When a replicative DNA polymerase (Pol) is stalled by damaged DNA, a ...
When a replicative DNA polymerase (Pol) is stalled by damaged DNA, a "polymerase switch" recruits specialized translesion synthesis (TLS) DNA polymerase(s) to sites of damage. Mammalian cells have several TLS DNA polymerases, including the four Y-family enzymes (Poleta, Poliota, Polkappa and REV1) that share multiple primary sequence motifs, but show preferential bypass of different DNA lesions. REV1 interacts with Poleta, Poliota, and Polkappa and therefore appears to play a central role during TLS in vivo. Here we have investigated the molecular basis for interactions between REV1 and Polkappa. We have identified novel REV1-interacting regions (RIRs) present in Polkappa, Poliota and Poleta. Within the RIRs, the presence of two consecutive phenylalanines (FF) is essential for REV1-binding. The consensus sequence for REV1-binding is denoted by x-x-x-F-F-y-y-y-y (x, no specific residue and y, no specific residue but not proline). Our results identify structural requirements that are necessary for FF-flanking residues to confer interactions with REV1. A Polkappa mutant lacking REV1-binding activity did not complement the genotoxin-sensitivity of Polk-null mouse embryonic fibroblast cells, thereby demonstrating that the REV1-interaction is essential for Polkappa function in vivo.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.