The proofreading exonuclease subunit epsilon of Escherichia coli DNA polymerase III is tethered to the polymerase subunit alpha via a flexible linker.

Abstract:

Escherichia coli DNA polymerase III holoenzyme is composed of 10 different subunits linked by noncovalent interactions. The polymerase activity resides in the alpha-subunit. The epsilon-subunit, which contains the proofreading exonuclease site within its N-terminal 185 residues, binds to alpha via a segment of 57 additional C-terminal residues, and also to theta, whose function is less well defined. The present study shows that theta greatly enhances the solubility of epsilon during cell-free synthesis. In addition, synthesis of epsilon in the presence of theta and alpha resulted in a soluble ternary complex that could readily be purified and analyzed by NMR spectroscopy. Cell-free synthesis of epsilon from PCR-amplified DNA coupled with site-directed mutagenesis and selective 15N-labeling provided site-specific assignments of NMR resonances of epsilon that were confirmed by lanthanide-induced pseudocontact shifts. The data show that the proofreading domain of epsilon is connected to alpha via a flexible linker peptide comprising over 20 residues. This distinguishes the alpha : epsilon complex from other proofreading polymerases, which have a more rigid multidomain structure.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.