Suppression of chemical mutagenesis in bacteriophage T4 by genetically modified DNA polymerases.

Incomplete polymerases:


Two antimutagenic DNA polymerases of bacteriophage T4 markedly reduce ...
Two antimutagenic DNA polymerases of bacteriophage T4 markedly reduce transition mutagenesis by a variety of chemical mutagens. Spontaneous mutation and mutagenesis by 2-aminopurine, 5-bromodeoxyuridine, and thymine deprivation are strongly suppressed. Mutagenesis at G:C sites by ethyl methanesulfonate, and at A:T sites by nitrous acid, is moderately suppressed. Mutagenesis at G:C sites by hydroxylamine and by nitrous acid is not suppressed. These results support the notion that the indispensable DNA polymerase of bacteriophage T4 plays a crucial role in the selection of the correct base during DNA replication. The data also reveal that mutagenic specificities of chemical agents depend as much upon the characteristics of the enzymatic apparatus of DNA replication as they do upon the chemistry of primary mutational lesions.



Mutational Analysis, Fidelity

One line summary:

Study of two antimutator with chemical mutagens, mutational specificities


new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.