A peptide switch regulates DNA polymerase processivity.

Abstract:

Chromosomal DNA polymerases are tethered to DNA by a circular sliding ...
Chromosomal DNA polymerases are tethered to DNA by a circular sliding clamp for high processivity. However, lagging strand synthesis requires the polymerase to rapidly dissociate on finishing each Okazaki fragment. The Escherichia coli replicase contains a subunit (tau) that promotes separation of polymerase from its clamp on finishing DNA segments. This report reveals the mechanism of this process. We find that tau binds the C-terminal residues of the DNA polymerase. Surprisingly, this same C-terminal "tail" of the polymerase interacts with the beta clamp, and tau competes with beta for this sequence. Moreover, tau acts as a DNA sensor. On binding primed DNA, tau releases the polymerase tail, allowing polymerase to bind beta for processive synthesis. But on sensing the DNA is complete (duplex), tau sequesters the polymerase tail from beta, disengaging polymerase from DNA. Therefore, DNA sensing by tau switches the polymerase peptide tail on and off the clamp and coordinates the dynamic turnover of polymerase during lagging strand synthesis.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.