Thermodynamics of the binding of Thermus aquaticus DNA polymerase to primed-template DNA.

Abstract:

DNA binding of the Type 1 DNA polymerase from Thermus aquaticus (Taq polymerase) and its Klentaq large fragment domain have been studied as a function of temperature. Equilibrium binding assays were performed from 5 to 70 degrees C using a fluorescence anisotropy assay and from 10 to 60 degrees C using isothermal titration calorimetry. In contrast to the usual behavior of thermophilic proteins at low temperatures, Taq and Klentaq bind DNA with high affinity at temperatures down to 5 degrees C. The affinity is maximal at 40-50 degrees C. The DeltaH and DeltaS of binding are highly temperature dependent, and the DeltaCp of binding is -0.7 to -0.8 kcal/mol K, for both Taq and Klentaq, with good agreement between van't Hoff and calorimetric values. Such a thermodynamic profile, however, is generally associated with sequence-specific DNA binding and not non- specific binding. Circular dichroism spectra show conformational rearrangements of both the DNA and the protein upon binding. The high DeltaCp of Taq/Klentaq DNA binding may be correlated with structure-specific binding in analogy to sequence- specific binding, or may be a general characteristic of proteins that primarily bind non-specifically to DNA. The low temperature DNA binding of Taq/Klentaq is suggested to be a general characteristic of thermophilic DNA binding proteins.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.