Yeast Rev1 protein is a G template-specific DNA polymerase.


Rev1 protein of Saccharomyces cerevisiae functions with DNA polymerase zeta in mutagenic trans-lesion synthesis. Because of the reported preferential incorporation of a C residue opposite an abasic site, Rev1 has been referred to as a deoxycytidyltransferase. Here, we use steady-state kinetics to examine nucleotide incorporation by Rev1 opposite undamaged and damaged template residues. We show that Rev1 specifically inserts a C residue opposite template G, and it is approximately 25-, 40-, and 400-fold less efficient at inserting a C residue opposite an abasic site, an O(6)-methylguanine, and an 8-oxoguanine lesion, respectively. Rev1 misincorporates G, A, and T residues opposite template G with a frequency of approximately 10(-3) to 10(-4). Consistent with this finding, Rev1 replicates DNA containing a string of Gs in a template-specific manner, but it has a low processivity incorporating 1.6 nucleotides per DNA binding event on the average. From these observations, we infer that Rev1 is a G template-specific DNA polymerase.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.