Structure of lithocholic acid binding to the N-terminal 8-kDa domain of DNA polymerase beta.

Abstract:

The purpose of this study was to investigate the molecular action of ...
The purpose of this study was to investigate the molecular action of lithocholic acid (LCA), known as a selective inhibitor of DNA polymerase beta (pol beta). The 39-kDa pol beta was separated proteolytically into two fragments of the template-primer binding domain (8 kDa) and the catalytic domain (31 kDa). LCA bound tightly to the 8-kDa fragment but not to the 31-kDa fragment. We examined the structural interaction with the 8-kDa domain using LCA. On (1)H-(15)N HMQC NMR analysis of pol beta with LCA, the 8-kDa domain bound to LCA as a 1:1 complex with a dissociation constant (K(D)) of 1.56 mM. The chemical shifts were observed only in residues mainly in helix-3, helix-4, and the 79-87 turn of the same face. No significant shifts were observed for helix-1, helix-2, and other loops of the 8-kDa domain. This region was composed mainly of three amino acid residues (Lys60, Leu77, and Thr79) of pol beta on the LCA interaction interface. The inhibition mechanism and the structure-function relationship between pol beta and LCA is discussed.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.