Role of the core DNA polymerase III subunits at the replication fork. Alpha is the only subunit required for processive replication.

Abstract:

The DNA polymerase III holoenzyme is composed of 10 subunits. The core of the polymerase contains the catalytic polymerase subunit, alpha, the proofreading 3'-->5' exonuclease, epsilon, and a subunit of unknown function, theta. The availability of the holoenzyme subunits in purified form has allowed us to investigate their roles at the replication fork. We show here that of the three subunits in the core polymerase, only alpha is required to form processive replication forks that move at high rates and that exhibit coupled leading- and lagging-strand synthesis in vitro. Taken together with previous data this suggests that the primary determinant of replication fork processivity is the interaction between another holoenzyme subunit, tau, and the replication fork helicase, DnaB.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.