Fluorescent oligonucleotides and deoxynucleotide triphosphates: preparation and their interaction with the large (Klenow) fragment of Escherichia coli DNA polymerase I.
Abstract:
Fluorescent derivatives of short oligonucleotides of defined sequence were prepared by the incorporation of 5-(propylamino)uridine via current phosphoramidite chemistry, followed by derivatization of the propylamine function with mansyl chloride. These oligomers, annealed to complementary oligomers, yielded short duplex DNA fluorescently labeled at a specific base. The fluorescence emission from this labeled duplex increases upon binding to the Klenow fragment of DNA polymerase I (KF) at specific positions within the duplex DNA. By varying the position of the label within the duplex DNA and observing the emission, points of strong enzyme-DNA interactions were elucidated. A similar fluorescent derivative of a deoxynucleoside triphosphate (dNTP), 5-[[[[[[(5- sulfonaphthalenyl)amino]ethyl]amino]carbonyl]- methyl]thio]-2'-deoxyuridine 5'-triphosphate (AEDANS-S-dUTP), was synthesized, whose emission also was increased upon binding to KF. The change in emission intensities between unbound and bound substrates enabled the measurements of KDs for the DNA and dNTP derivative, which were found to be 0.15 nM and 2.9 microM, respectively. Stopped-flow measurements on these species yielded association and dissociation rates for each. Anisotropy measurements of the labeled base at various positions in the duplex yielded values that support the measurements made by observing the emission intensities.
Polymerases:
Topics:
Nucleotide Analogs / Template Lesions, Nucleotide Incorporation
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.