A smaller form of the sliding clamp subunit of DNA polymerase III is induced by UV irradiation in Escherichia coli.


The beta subunit of DNA polymerase III holoenzyme of Escherichia coli ...
The beta subunit of DNA polymerase III holoenzyme of Escherichia coli is a 40.6-kDa protein that functions as a sliding DNA clamp (Stukenberg, P. T., Studwell-Vaughan, P. S., and O'Donnell, M. (1991) J. Biol. Chem. 266, 11328-11334). It is responsible for tethering the polymerase to DNA and endowing it with the high processivity required for DNA replication. Here and in a companion study (Paz-Elizur, T., Skaliter, R., Blumenstein, S., and Livneh, Z. (1996) J. Biol. Chem. 271, 2482-2490) we report that the dnaN gene, encoding the beta subunit, contains an internal in-frame gene, termed dnaN*, that encodes a smaller form of the beta subunit. The novel 26-kDa protein, termed beta*, is UV-inducible, and when overexpressed from a plasmid under an inducible promoter, it increases up to 6-fold the UV resistance of E. coli cells. These findings suggest that the beta* protein functions in a reaction associated with DNA repair or recovery of DNA replication in UV-irradiated cells.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.