ATP interactions of the tau and gamma subunits of DNA polymerase III holoenzyme of Escherichia coli.


The tau and gamma subunits of the DNA polymerase III holoenzyme of ...
The tau and gamma subunits of the DNA polymerase III holoenzyme of Escherichia coli were each isolated in large quantities as oligomers from overproducing cells in which their genes (dnaZ and X) were under the control of a T7 phage promoter. The 52-kDa gamma subunit (encoded by the dnaZ sequence) contains three-forths of the N-terminal residues of the 71-kDa tau subunit (encoded by the dnaX sequence). Both gamma and tau share a binding site for ATP (or dATP). A DNA-dependent ATPase activity (Lee, S.H., and Walker, J.R. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 2713-2717) exhibited only by the tau subunit, presumably requires a DNA-binding site in the C-terminal domain lacking in the gamma subunit. Among ATPases dependent on single-stranded DNA, the tau activity is remarkable in the failure of homopolymers (e.g. poly(dA) or poly(dT)) to replace natural DNAs. The presumed need for certain secondary structures may reflect a feature of template binding in the crucial contribution that tau makes to the high processivity of polymerase III holoenzyme. Limited tryptic digestion of tau generates a fragment that resembles gamma in: (i) size, (ii) binding of ATP without ATPase activity, and (iii) a level of complementing holoenzyme activity in extracts of dnaZ-mutant cells that is higher than that of tau.






new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.