Chemical characterization and purification of the beta subunit of the DNA polymerase III holoenzyme from an overproducing strain.


We have purified the beta subunit of the DNA polymerase III holoenzyme ...
We have purified the beta subunit of the DNA polymerase III holoenzyme to homogeneity from an overproducing strain (Blanar, M., Sandler, S., Armengod, M., Ream, L., and Clark, A. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 4622-4626). From this procedure we can obtain 100 mg quantities of protein. The beta isolated from the overproducer is indistinguishable from that isolated from wild-type cells in terms of its activity and molecular weight. Partial amino acid sequence analysis has confirmed the DNA sequence of the dnaN gene (Ohmori, H., Kimura, M., Nagata, T., and Sakakibara, Y. (1984) Gene (Amst.) 28, 159-170) and established the sites for initiation and termination of translation. No processing that removes amino acid residues from beta occurs since the active protein begins with the initiating methionine and terminates at the position predicted from the DNA sequence. Our knowledge of the precise amino acid composition has been used to determine the extinction coefficient of beta to be 17,900 and 18,700 cm-1 M-1 at 280 and 277 nm, respectively. The extinction coefficient at 280 nm is reduced to 14,700 cm-1 M-1 under denaturing conditions in guanidine HCl. Conditions have been optimized so that 1 N-ethylmaleimide residue can be incorporated per beta monomer with full preservation of activity.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.