Nucleoside triphosphate binding to DNA polymerase III holoenzyme of Escherichia coli. A direct photoaffinity labeling study.

Abstract:

The physical basis of ATP binding and activation of DNA polymerase III holoenzyme was studied by an ultraviolet irradiation cross-linking technique. ATP and dATP were photocrosslinked to the alpha, tau, gamma, and delta subunits of holoenzyme; photocrosslinking of dATP was competitively inhibited by ATP. No photocrosslinking was observed with GTP or CTP, nor did GTP, CTP, or UTP inhibit cross-linking of ATP. ADP and adenosine 5'-O-(3-thio)-triphosphate, both potent inhibitors of ATP activation of holoenzyme, inhibited cross-linking of ATP to tau, gamma, and delta subunits, but not to the alpha subunit, suggesting that one or more of these subunits are ATP (or dATP)-binding sites. Photocrosslinking of dTTP to the ATP-activated holoenzyme was exclusively to the epsilon subunit, the dnaQ ( mutD ) gene product; dCTP and dGTP were not photocrosslinked to any subunit. Binding of dTTP was enhanced by ATP, but by no other nucleotide (or deoxynucleotide). This binding of dTTP to epsilon, a subunit likely responsible for regulation of proofreading by the holoenzyme, may function in the control of the fidelity of replication.

Polymerases:

Topics:

Note:

Cofactor

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.