Conferring RNA polymerase activity to a DNA polymerase: a single residue in reverse transcriptase controls substrate selection.


The traditional classification of nucleic acid polymerases as either DNA or RNA polymerases is based, in large part, on their fundamental preference for the incorporation of either deoxyribonucleotides or ribonucleotides during chain elongation. The refined structure determination of Moloney murine leukemia virus reverse transcriptase, a strict DNA polymerase, recently allowed the prediction that a single amino acid residue at the active site might be responsible for the discrimination against the 2'OH group of an incoming ribonucleotide. Mutation of this residue resulted in a variant enzyme now capable of acting as an RNA polymerase. In marked contrast to the wild-type enzyme, the K(m) of the mutant enzyme for ribonucleotides was comparable to that for deoxyribonucleotides. The results are consistent with proposals of a common evolutionary origin for both classes of enzymes and support models of a common mechanism of nucleic acid synthesis underlying catalysis by all such polymerases.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.