Site-directed mutagenesis of the χ subunit of DNA polymerase III and single-stranded DNA-binding protein of E. coli reveals key residues for their interaction.

Abstract:

During DNA replication in Escherichia coli, single-stranded DNA-binding protein (SSB) protects single-stranded DNA from nuclease action and hairpin formation. It is known that the highly conserved C-terminus of SSB contacts the χ subunit of DNA polymerase III. However, there only exists a theoretical model in which the 11 C-terminal amino acids of SSB have been docked onto the surface of χ. In order to refine this model of SSB/χ interaction, we exchanged amino acids in χ and SSB by site-directed mutagenesis that are predicted to be of key importance. Detailed characterization of the interaction of these mutants by analytical ultracentrifugation shows that the interaction area is correctly predicted by the model; however, the SSB C-terminus binds in a different orientation to the χ surface. We show that evolutionary conserved residues of χ form a hydrophobic pocket to accommodate the ultimate two amino acids of SSB, P176 and F177. This pocket is surrounded by conserved basic residues, important for the SSB/χ interaction. Mass spectrometric analysis of χ protein cross-linked to a C-terminal peptide of SSB reveals that K132 of χ and D172 of SSB are in close contact. The proposed SSB-binding site resembles those described for RecQ and exonuclease I.

Polymerases:

Topics:

Mutational Analysis

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.