Identification of low-molecular weight inhibitors of HIV-1 reverse transcriptase using a cell-based high-throughput screening system.


A cell-based drug screening system that utilizes a green fluorescent protein (GFP)-tagged recombinant lentiviral vector has been used to screen a chemical library of 34,000 small molecules for antiretroviral compounds. Thirty-three initial hits were analyzed and four compounds were selected based on their anti-human immunodeficiency virus type 1 (HIV-1) activity (EC(50) values ranging from 0.17 to 1.9μM) and low cellular toxicity (CC(50) values >50μM). The four compounds blocked reverse transcription and were able to inhibit the replication of a panel of different HIV-1 strains, including non-B subtype and viruses resistant to different drug classes. Serial in vitro passages of HIV-1(B-HXB2) in the presence of increasing drug concentrations selected for viruses with reduced susceptibility. Mutations previously associated with resistance to non-nucleoside reverse transcriptase (RT) inhibitors (L100I and Y181C for CBL-17 and CBL-21, respectively) or linked to nucleoside analogue resistance (A62V for CBL-4.0 and CBL-4.1) were identified. Viruses with reduced susceptibility to CBL-17 and CBL-21 but not the ones resistant to CBL-4.0 or CBL-4.1 showed a decrease in replicative fitness. Interestingly, two of the small molecules (CBL-4.0 and CBL-4.1) are indolopyridinones that were previously described as nucleotide-competing RT inhibitors.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.