Protection against methylation-induced cytotoxicity by DNA polymerase beta-dependent long patch base excision repair.
The Journal of biological chemistry (2000), Volume 275, Page 2211
Abstract:
Using a plasmid-based uracil-containing DNA substrate, we found that the long patch base excision repair (BER) activity of a wild-type mouse fibroblast extract was partially inhibited by an antibody to DNA polymerase beta (beta-pol). This suggests that beta-pol participates in long patch BER, in addition to single-nucleotide BER. In single-nucleotide BER, the deoxyribose phosphate (dRP) in the abasic site is removed by the lyase activity of beta-pol. Methoxyamine (MX) can react with the aldehyde of an abasic site, making it refractory to the beta-elimination step of the dRP lyase mechanism, thus blocking single-nucleotide BER. MX exposure sensitizes wild-type, but not beta-pol null mouse embryonic fibroblasts, to the cytotoxic effects of methyl methanesulfonate (MMS) and methylnitrosourea. Expression of beta-pol in the null cells restores the ability of MX to modulate sensitivity to MMS. The beta-pol null cells are known to be hypersensitive to MMS and methylnitrosourea, and in the presence of MX (i.e. under conditions where single-nucleotide BER is blocked) the null cells are still considerably more sensitive than wild-type. The data are consistent with a role of beta-pol in long patch BER, which helps protect cells against methylation damage-induced cytotoxicity.
Polymerases:
Topics:
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.