Protein-primed replication of bacteriophage phi 29 DNA.

Abstract:

The replication of phi 29 DNA-protein p3 represents a simple model system to study the protein-priming mechanism of initiation of replication. The phi 29 DNA polymerase involved both in the initiation and elongation steps of phi 29 DNA-protein p3 replication, is a very processive enzyme and it is able to produce strand-displacement in the absence of other proteins. To correlate functional and structural domains in the phi 29 DNA polymerase point mutants in the most carboxyl region of amino-acid homology with other DNA polymerases have been constructed. Most of the mutations had a decreased initiation and elongation activity, but normal 3'----5' exonuclease activity, suggesting that this region contributes to the active domain for initiation and elongation. Point and deletion mutants in the terminal protein have allowed the mapping of one DNA-binding region and two DNA-polymerase-binding regions. The viral protein p6, which stimulates the initiation of replication, binds to a set of specific signals present at both phi 29 DNA ends. A good correlation of binding and stimulation of replication has been obtained by using fragments containing phi 29 DNA-terminal sequences and deletion mutants of protein p6. The viral protein p5 has been shown to bind to single-stranded DNA, to protect the latter against nuclease digetion, and to stimulate phi 29 DNA-protein p3 replication in vitro.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.