Genomic structure, chromosomal localization and identification of mutations in the xeroderma pigmentosum variant (XPV) gene.


The xeroderma pigmentosum variant (XP-V) is one of the most common ...
The xeroderma pigmentosum variant (XP-V) is one of the most common forms of this cancer-prone syndrome. XP groups A through G are characterized by defective nucleotide excision repair, whereas the XP-V phenotype is proficient in this pathway. The XPV gene encodes DNA polymerase eta, which catalyzes an accurate translesion synthesis, indicating that the XPV gene contributes tumor suppression in normal individuals. Here we describe the genomic structure and chromosomal localization of the XPV gene, which includes 11 exons covering the entire coding sequence, lacks a TATA sequence in the upstream region of the transcription-initiation, and is located at the chromosome band 6p21.1-6p12. Analyses of patient-derived XP-V cell lines strongly suggested that three of four cell lines carried homozygous mutations in the XPV gene. The fourth cell line, XP1RO, carried heterozygous point mutations in the XPV gene, one of which was located at the splice acceptor site of exon 2, resulting in the omission of exon 2 from the mature mRNA. These findings provide a basis for diagnosis and therapy of XP-V patients.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.