Effects of aphidicolin and/or 2',3'-dideoxythymidine on DNA repair induced in HeLa cells by four types of DNA-damaging agents.

Abstract:

The alkaline sucrose density gradient centrifugation method was modified to permit detection of 1 lesion/10(9) daltons of DNA. With this technique, the involvements of DNA polymerases in DNA repair of damage by dimethyl sulfate, UV irradiation, neocarzinostatin, and bleomycin were studied in HeLa cells with the aid of the DNA polymerase inhibitors aphidicolin and 2',3'-dideoxythymidine. DNA repair after UV-induced damage seemed to involve only polymerase alpha, while repair of damage by the other three agents involved both polymerase alpha and a non-alpha polymerase, probably polymerase beta. But repair after damage by dimethyl sulfate differed from that after damage by neocarzinostatin or bleomycin with respect to the co-operations of polymerase alpha and polymerase beta: in repair of dimethyl sulfate-induced damage, both polymerases operated on the same lesions, whereas after damage by neocarzinostatin or bleomycin, polymerase alpha and polymerase beta functioned independently on different lesions.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.