Structure of the gene 2.5 protein, a single-stranded DNA binding protein encoded by bacteriophage T7.


The gene 2.5 protein (gp2.5) of bacteriophage T7 is a single-stranded ...
The gene 2.5 protein (gp2.5) of bacteriophage T7 is a single-stranded DNA (ssDNA) binding protein that has essential roles in DNA replication and recombination. In addition to binding DNA, gp2.5 physically interacts with T7 DNA polymerase and T7 primase-helicase during replication to coordinate events at the replication fork. We have determined a 1.9-A crystal structure of gp2.5 and show that it has a conserved OB-fold (oligosaccharide/oligonucleotide binding fold) that is well adapted for interactions with ssDNA. Superposition of the OB-folds of gp2.5 and other ssDNA binding proteins reveals a conserved patch of aromatic residues that stack against the bases of ssDNA in the other crystal structures, suggesting that gp2.5 binds to ssDNA in a similar manner. An acidic C-terminal extension of the gp2.5 protein, which is required for dimer formation and for interactions with the T7 DNA polymerase and the primase-helicase, appears to be flexible and may act as a switch that modulates the DNA binding affinity of gp2.5.





new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.