UmuD(2) inhibits a non-covalent step during DinB-mediated template slippage on homopolymeric nucleotide runs.

Abstract:

Escherichia coli DinB (DNA polymerase IV) possesses an enzyme architecture resulting in specialized lesion bypass function and the potential for creating -1 frameshifts in homopolymeric nucleotide runs. We have previously shown that the mutagenic potential of DinB is regulated by the DNA damage response protein UmuD(2). In the current study, we employ a pre-steady-state fluorescence approach to gain a mechanistic understanding of DinB regulation by UmuD(2). Our results suggest that DinB, like its mammalian and archaeal orthologs, uses a template slippage mechanism to create single base deletions on homopolymeric runs. With 2-aminopurine as a fluorescent reporter in the DNA substrate, the template slippage reaction results in a prechemistry fluorescence change that is inhibited by UmuD(2). We propose a model in which DNA templates containing homopolymeric nucleotide runs, when bound to DinB, are in an equilibrium between non-slipped and slipped conformations. UmuD(2), when bound to DinB, displaces the equilibrium in favor of the non-slipped conformation, thereby preventing frameshifting and potentially enhancing DinB activity on non-slipped substrates.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.