Genetics of herpes simplex virus.

Abstract:

The most direct approach to elucidating the roles of herpes simplex ...
The most direct approach to elucidating the roles of herpes simplex virus (HSV) proteins in the viral replicative cycle has been to isolate temperature-sensitive, cytolysis-resistant, and drug-resistant mutants that exhibit alterations in the synthesis or activity of these proteins. The development of procedures for the introduction of temperature-sensitive mutations into physically defined regions of the viral genome and for fine mapping of these mutations has proven especially valuable. Thus, (1) hydroxylamine mutagenesis of the HSV-1 BglII I fragment (coordinates 0.312-0.415) has facilitated the genetic and functional characterization of the gene for the major viral DNA-binding protein of 130 K molecular weight; (2) the selection of a mutant conditionally able to render infected cells resistant to immune cytolysis has led to identification of an HSV gene involved in the processing of viral glycoproteins; and (3) the combined use of temperature-sensitive and drug-resistant mutants has led to a better definition of the physical limits and functional domains of the gene for HSV DNA polymerase.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.