Dynamics of human replication factors in the elongation phase of DNA replication.


In eukaryotic cells, DNA replication is carried out by coordinated ...
In eukaryotic cells, DNA replication is carried out by coordinated actions of many proteins, including DNA polymerase delta (pol delta), replication factor C (RFC), proliferating cell nuclear antigen (PCNA) and replication protein A. Here we describe dynamic properties of these proteins in the elongation step on a single-stranded M13 template, providing evidence that pol delta has a distributive nature over the 7 kb of the M13 template, repeating a frequent dissociation-association cycle at growing 3'-hydroxyl ends. Some PCNA could remain at the primer terminus during this cycle, while the remainder slides out of the primer terminus or is unloaded once pol delta has dissociated. RFC remains around the primer terminus through the elongation phase, and could probably hold PCNA from which pol delta has detached, or reload PCNA from solution to restart DNA synthesis. Furthermore, we suggest that a subunit of pol delta, POLD3, plays a crucial role in the efficient recycling of PCNA during dissociation-association cycles of pol delta. Based on these observations, we propose a model for dynamic processes in elongation complexes.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.