Effect of the O6 substituent on misincorporation kinetics catalyzed by DNA polymerases at O(6)-methylguanine and O(6)-benzylguanine.

Biochemistry (2002), Volume 41, Page 1027


Misincorporation at a DNA-carcinogen adduct may contribute to formation of mutations if a polymerase proceeds past the lesion, compromising fidelity, as in the G:C to A:T mutations caused by O(6)-alkylguanine. Replication of primer/templates containing guanine (G), O(6)-methylguanine (O(6)-MeG), or O(6)-benzylguanine (O(6)-BzG) was assessed using T7 DNA polymerase exo(-) (T7(-)) and HIV-1 reverse transcriptase (RT). The steady-state parameters indicated that T7(-) and RT preferentially incorporated dTTP opposite O(6)-MeG and O(6)-BzG. The incorporation efficiencies (k(cat)/K(m)) were less for O(6)-BzG than O(6)-MeG for both dCTP and dTTP insertion. Pre-steady-state analysis indicated that the product formed during the burst phase, i.e., the burst amplitude, differed significantly between the unmodified 24-mer/36-G-mer and the O(6)-alkylG-containing substrates. Extension of the O(6)-BzG-containing duplexes was much more difficult for both polymerases as compared to O(6)-MeG, except when RT easily extended the O(6)-BzG:T base pair. The for binding of dCTP or dTTP to a RT*DNA complex containing O(6)-MeG was 8-fold greater than for dNTP binding to a complex containing unmodified DNA. The for a RT*DNA complex containing O(6)-BzG was 50-fold greater. In conclusion, the bulkier O(6)-BzG is a greater block to polymerization by T7(-) and RT than is O(6)-MeG, but some polymerization does occur with an O(6)-BzG substrate. Pre-steady-state analysis indicates that neither dCTP nor dTTP insertion is strongly preferred during polymerization of O(6)-BzG-containing DNA, unlike the case of O(6)-MeG. These results and others regarding polymerase stalling opposite O(6)-MeG and O(6)-BzG are discussed in the following paper in this issue [Woodside, A. M., and Guengerich, F. P. (2002) Biochemistry 41, 1039-1050].




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.