Nucleotide selectivity opposite a benzo[a]pyrene-derived N2-dG adduct in a Y-family DNA polymerase: a 5'-slippage mechanism.

Abstract:

The Y-family DNA polymerase Dpo4, from the archaeon bacterium Sulfolobus solfataricus, is a member of the DinB family, which also contains human Pol kappa. It has a spacious active site that can accommodate two templating bases simultaneously, with one of them skipped by the incoming dNTP. Assays of single dNTP insertion opposite a benzo[ a]pyrene-derived N (2)-dG adduct, 10 S(+)- trans- anti-[BP]- N (2)-dG ([BP]G*), reveal that an incoming dATP is significantly preferred over the other three dNTPs in the TG 1*G 2 sequence context. Molecular modeling and dynamics simulations were carried out to interpret this experimental observation on a molecular level. Modeling studies suggest that the significant preference for dATP insertion observed experimentally can result from two possible dATP incorporation modes. The dATP can be inserted opposite the T on the 5' side of the adduct G 1*, using an unusual 5'-slippage pattern, in which the unadducted G 2, rather than G 1*, is skipped, to produce a -1 deletion. In addition, the dATP can be misincorporated opposite the adduct. The 5'-slippage pattern may be generally facilitated in cases where the base 3' to the lesion is the same as the adducted base.

Polymerases:

Topics:

Health/Disease, Structure and Structure/Function, Fidelity

Note:

benzo[a]pyrene adduct with molecular modeling

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.