Nucleotide selectivity opposite a benzo[a]pyrene-derived N2-dG adduct in a Y-family DNA polymerase: a 5'-slippage mechanism.


The Y-family DNA polymerase Dpo4, from the archaeon bacterium ...
The Y-family DNA polymerase Dpo4, from the archaeon bacterium Sulfolobus solfataricus, is a member of the DinB family, which also contains human Pol kappa. It has a spacious active site that can accommodate two templating bases simultaneously, with one of them skipped by the incoming dNTP. Assays of single dNTP insertion opposite a benzo[ a]pyrene-derived N (2)-dG adduct, 10 S(+)- trans- anti-[BP]- N (2)-dG ([BP]G*), reveal that an incoming dATP is significantly preferred over the other three dNTPs in the TG 1*G 2 sequence context. Molecular modeling and dynamics simulations were carried out to interpret this experimental observation on a molecular level. Modeling studies suggest that the significant preference for dATP insertion observed experimentally can result from two possible dATP incorporation modes. The dATP can be inserted opposite the T on the 5' side of the adduct G 1*, using an unusual 5'-slippage pattern, in which the unadducted G 2, rather than G 1*, is skipped, to produce a -1 deletion. In addition, the dATP can be misincorporated opposite the adduct. The 5'-slippage pattern may be generally facilitated in cases where the base 3' to the lesion is the same as the adducted base.



Health/Disease, Structure and Structure/Function, Fidelity


benzo[a]pyrene adduct with molecular modeling


new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.