Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues.


It has been shown previously that deoxyguanosine residues in DNA are ...
It has been shown previously that deoxyguanosine residues in DNA are hydroxylated at the C-8 position both in vitro and in vivo to produce 8-hydroxydeoxyguanosine (8-OH-dG) by various agents that produce oxygen radicals such as reducing reagents-O2, metal ions-O2, polyphenol-H2O2-Fe3+, asbestos-H2O2 or ionizing radiation. These agents are mostly either mutagenic or carcinogenic; therefore, the formation of 8-OH-dG can also be considered a likely cause of mutation or carcinogenesis by oxygen radicals. It is of interest to know whether the 8-OH-dG residue in DNA is misread during DNA replication. To answer this question, we have examined the effect of the 8-OH-dG residue in DNA on the fidelity of DNA replication using a DNA synthesis system in vitro with Escherichia coli DNA polymerase I (Klenow fragment). The synthetic oligodeoxynucleotides, with or without an 8-OH-dG residue in a specified position, were chemically synthesized and used as templates for DNA synthesis under the conditions of the dideoxy chain termination sequencing method. Surprisingly, in addition to misreading of the 8-OH-dG residue itself, pyrimidines next to the 8-OH-dG residue (G has not yet been tested) were also misread.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.