Human DNA polymerase β, but not λ, can bypass a 2-deoxyribonolactone lesion together with proliferating cell nuclear antigen.


The C1'-oxidized lesion 2-deoxyribonolactone (L) is induced by free ...
The C1'-oxidized lesion 2-deoxyribonolactone (L) is induced by free radical attack of DNA. This lesion is mutagenic, inhibits base excision repair, and can lead to strand scission. In double stranded DNA L is repaired by long-patch base excision repair, but it induces replication fork arrest in a single-strand template. Translesion synthesis requires a specialized DNA polymerase (Pol). In E. coli, Pol V is responsible for bypassing L, while in yeast Pol ζ has been shown to be required for efficient bypass. Very little is known about the identity of human Pols capable of bypassing L. For instance, the activity of family X enzymes has never been investigated. We examined the ability of different family X Pols: Pols β, λ and TdT from human cells and Pol IV from S. cerevisiae to act on DNA containing an isolated 2-deoxyribonolactone, as well as when the lesion comprises the 5'-component of a tandem lesion. We show that Pol β, but not Pol λ, can bypass a single L lesion in the template, and its activity is increased by the auxiliary protein proliferating cell nuclear antigen (PCNA), while both enzymes were completely blocked by a tandem lesion. Yeast Pol IV was able to bypass the single L and the tandem lesion but with little nucleotide insertion specificity. Finally, L did not affect the polymerization activity of the template-independent enzyme TdT.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.