Nuclear DNA polymerases and the HeLa cell cycle.


Purified nuclei of HeLa S3 cells contain two DNA-dependent DNA polymerases that have distinct physical and enzymatic properties. We have investigated the variations in their activity during the cell cycle of a synchronized culture. Cells were synchronized by a double thymidine block, harvested at various phases of the cycle, and the two DNA polymerases were purified partially by DEAE-cellulose and phosphocellulose chromatography. The activity of DNA polymerase I (low molecular weight, N-ethylmaleimide-insensitive) remains essentially constant throughout the cycle. The activity of DNA polymerase II (high molecular weight, N-ethylmaleimide-sensitive), however, increases during G1 to mid-S and declines, 7- to 10-fold between late-S and G2. Addition of cycloheximide (60 mug/ml) to cultures 12 hours after the release from thymidine block abolishes the rise in the activity of DNA polymerase II. Cycloheximide also reduced the activity of DNA polymerase I by 60%. Addition of hydroxyurea (1mM) at 1 hour after release has no effect on the activity of either enzyme. We conclude that in HeLa cells, DNA polymerase I and II are distinct enzymes, that DNA polymerase II probably functions in DNA replication and is probably induced in response to stimuli for DNA biosynthesis.



Historical Protein Properties (MW, pI, ...)


new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.