Nucleotide-dependent conformational change governs specificity and analog discrimination by HIV reverse transcriptase.


Single turnover studies on HIV reverse transcriptase suggest that nucleoside analogs bind more tightly to the enzyme than normal substrates, contrary to rational structural predictions. Here we resolve these controversies by monitoring the kinetics of nucleotide-induced changes in enzyme structure. We show that the specificity constant for incorporation of a normal nucleotide (dCTP) is determined solely by the rate of binding (including isomerization) because isomerization to the closed complex commits the substrate to react. In contrast, a nucleoside analog (3TC-TP, triphosphate form of lamivudine) is incorporated slowly, allowing the conformational change to come to equilibrium and revealing tight nucleotide binding. Our data reconcile previously conflicting reports suggesting that nucleotide analogs bind tighter than normal nucleotides. Rather, dCTP and 3TC-TP bind with nearly equal affinities, but the binding of dCTP never reaches equilibrium. Discrimination against 3TC-TP is based on the slower rate of incorporation due to misalignment of the substrate and/or catalytic residues.



Nucleotide Analogs / Template Lesions, Nucleotide Incorporation, Reverse Transcriptase


new topics/pols set partial results complete validated


Polymerase Reference Property Result Context
HIV RT Kellinger MW2010 Reverse Transcriptase Activity Yes

Entry validated by:

Log in to edit reference All References

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.