Discrimination between right and wrong purine dNTPs by DNA polymerase I from Bacillus stearothermophilus.


We used a series of dATP and dGTP analogues to determine how DNA ...
We used a series of dATP and dGTP analogues to determine how DNA polymerase I from Bacillus stearothermophilus (BF), a prototypical A family polymerase, uses N-1, N(2), N-3, and N(6) of purine dNTPs to differentiate between right and wrong nucleotide incorporation. Altering any of these nitrogens had two effects. First, it decreased the efficiency of correct incorporation of the resulting dNTP analogue, with the loss of N-1 and N-3 having the most severe effects. Second, it dramatically increased the rate of misincorporation of the resulting dNTP analogues, with alterations in either N-1 or N(6) having the most severe impacts. Adding N(2) to dNTPs containing the bases adenine and purine increased the degree of polymerization opposite T but also tremendously increased the degree of misincorporation opposite A, C, and G. Thus, BF uses N-1, N(2), N-3, and N(6) of purine dNTPs both as negative selectors to prevent misincorporation and as positive selectors to enhance correct incorporation. Comparing how BF discriminates between right and wrong dNTPs with both B family polymerases and low-fidelity polymerases indicates that BF has chosen a unique solution vis-a-vis these other enzymes and, therefore, that nature has evolved at least three mechanistically distinct solutions.



Nucleotide Incorporation


new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.