Polkappa protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene.


Several low-fidelity DNA polymerases have recently been discovered ...
Several low-fidelity DNA polymerases have recently been discovered that are able to bypass DNA lesions during DNA synthesis in vitro. The efficiency and accuracy of lesion bypass is, however, both polymerase and lesion specific. For example, in vitro studies revealed that human DNA polymerase kappa (Polkappa) is unable to insert a base opposite a cis-syn thymine-thymine dimer or cisplatin adduct, yet can bypass some DNA lesions such as abasic site and acetylaminofluorene-adducted guanine in an error-prone manner. More importantly, Polkappa is able to bypass benzo[a]pyrene (B[a]P)-adducted guanine accurately and efficiently. To investigate the biological function of Polkappa, we have generated mouse embryonic stem (ES) cells deficient in the Polk gene encoding the enzyme. Polk-deficient ES cells grow normally and their sensitivities to UV and x-ray radiation are only slightly affected. In contrast, the mutant cells are highly sensitive to both killing and mutagenesis induced by B[a]P. Furthermore, the spectrum of mutations recovered in the Polk-deficient cells is different from that in the wild-type cells. Thus, our results indicate that Polkappa plays an important role in suppressing mutations at DNA lesions generated by B[a]P.



Mutational Analysis, Modulators/Inhibitors, Nucleotide Analogs / Template Lesions, Nucleotide Incorporation


new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.