Polymerase beta simulations suggest that Arg258 rotation is a slow step rather than large subdomain motions per se.


The large-scale opening motion of mammalian DNA polymerase beta is ...
The large-scale opening motion of mammalian DNA polymerase beta is followed at atomic resolution by dynamic simulations that link crystal "closed" and "open" conformations. The closing/opening conformational change is thought to be key to the ability of polymerases to choose a correct nucleotide (through "induced fit") and hence maintain DNA repair synthesis fidelity. Corroborating available structural and kinetic measurements, our studies bridge static microscopic crystal structures with macroscopic kinetic data by delineating a specific sequence, Phe272 ring flip, large thumb movement, Arg258 rotation with release of catalytic Mg2+, together with estimated time-scales, that suggest the Arg258 rearrangement as a limiting factor of large subdomain motions. If similarly slow in the closing motion, this conformational change might be restricted further when an incorrect nucleotide binds and thus play a role in pol beta's selectivity for the correct nucleotide. These results suggest new lines of experimentation in the study of polymerase mechanisms (e.g. enzyme mutants), which should provide further insights into mechanisms of error discrimination and DNA synthesis fidelity.



Mutational Analysis, Kinetic Parameters, Structure and Structure/Function, Fidelity, Nucleotide Incorporation, Enzyme Substrate Interactions


new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.