Resolving a fidelity paradox: why Escherichia coli DNA polymerase II makes more base substitution errors in AT- compared with GC-rich DNA.

Abstract:

The activity of DNA polymerase-associated proofreading 3'-exonucleases is generally enhanced in less stable DNA regions leading to a reduction in base substitution error frequencies in AT- versus GC-rich sequences. Unexpectedly, however, the opposite result was found for Escherichia coli DNA polymerase II (pol II). Nucleotide misincorporation frequencies for pol II were found to be 3-5-fold higher in AT- compared with GC-rich DNA, both in the presence and absence of polymerase processivity subunits, beta dimer and gamma complex. In contrast, E. coli pol III holoenzyme, behaving "as expected," exhibited 3-5-fold lower misincorporation frequencies in AT-rich DNA. A reduction in fidelity in AT-rich regions occurred for pol II despite having an associated 3'-exonuclease proofreading activity that preferentially degrades AT-rich compared with GC-rich DNA primer-template in the absence of DNA synthesis. Concomitant with a reduction in fidelity, pol II polymerization efficiencies were 2-6-fold higher in AT-rich DNA, depending on sequence context. Pol II paradoxical fidelity behavior can be accounted for by the enzyme's preference for forward polymerization in AT-rich sequences. The more efficient polymerization suppresses proofreading thereby causing a significant increase in base substitution error rates in AT-rich regions.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.