Resolution of head-on collisions between the transcription machinery and bacteriophage phi29 DNA polymerase is dependent on RNA polymerase translocation.

Abstract:

The outcome of collisions between Bacillus subtilis phage Phi29 DNA ...
The outcome of collisions between Bacillus subtilis phage Phi29 DNA polymerase and oppositely oriented transcription complexes has been studied in vitro. We found that the replication fork was unable to go past a transcription ternary complex stalled head-on. However, head-on collisions did not lead to a deadlock. Both DNA and RNA polymerase remained bound to the template and, when the halted transcription complex was allowed to move, the replication machinery resumed normal elongation. These results suggested that a replication fork that encounters an RNA polymerase head-on whose movement is not impeded would bypass the transcription machinery. Our results for head-on collisions between concurrently moving replication and transcription complexes are indeed consistent with the existence of a resolving mechanism. The ability of Phi29 DNA polymerase to resolve head-on collisions with itself during symmetrical replication of Phi29 DNA in vivo is likely to be related to its ability to pass a head-on oriented RNA polymerase.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.