Mutations in the primer grip region of HIV reverse transcriptase can increase replication fidelity.
The Journal of biological chemistry (1999), Volume 274, Page 28175
Abstract:
Mutations in the primer grip region of human immunodeficiency virus reverse transcriptase (HIV-RT) affect its replication fidelity. The primer grip region (residues 227-235) correctly positions the 3'-ends of primers. Point mutations were created by alanine substitution at positions 224-235. Error frequencies were measured by extension of a dG:dA primer-template mismatch. Mutants E224A, P225A, P226A, L228A, and E233A were approximately equal to the wild type in their ability to extend the mismatch. Mutants F227A, W229A, M230A, G231A, and Y232A extended 40, 66, 54, 72, and 76% less efficiently past a dG:dA mismatch compared with the wild type. We also examined the misinsertion rates of dG, dC, or dA across from a DNA template dA using RT mutants F227A and W229A. Mutant W229A exhibited high fidelity and did not produce a dG:dA or dC:dA mismatch. Interestingly, mutant F227A displayed high fidelity for dG:dA and dC:dA mismatches but low fidelity for dA:dA misinsertions. This indicates that F227A discriminates against particular base substitutions. However, a primer extension assay with three dNTPs showed that F227A generally displays higher fidelity than the wild type RT. Clearly, primer grip mutations can improve or worsen either the overall or base-specific fidelity of HIV-RT. We hypothesize that wild type RT has evolved to a fidelity that allows genetic variation without compromising yield of viable viruses.
Polymerases:
Topics:
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.